General Requirement Formulae for the 21cm Cylindrical Radio Telescope

Dave McGinnis April 7, 2009

Frequency:

$$F(z) = \frac{1.4GHz}{1+z} \tag{1}$$

Frequency resolution:

$$\Delta F(z, \Delta z) = F(z) \frac{\Delta z}{1+z} \tag{2}$$

where Δz is the required resolution in redshift.

Feed Spacing¹

It is assumed that the feed antenna will have a wide field of view, especially for the polarization perpendicular to the length of the cylinder. For a phased array in which each feed is digitized separately, the first alias will show up on the horizon when the feed spacing d is given as:

$$d(\Delta\theta_{\rm D}, z) = \frac{\lambda(F(z))}{1 + \sin(\frac{\Delta\theta_{\rm D}}{2})}$$
(3)

where λ is the wavelength at the required redshift, $\Delta\theta_D$ is the span in declination that the telescope must cover.

Number of Feeds¹

$$N_{feed}(\Delta\theta_{\rm D}, z, \delta\theta_{\rm D}) = \frac{\lambda(F(z))}{d(\Delta\theta_{\rm D}, z) \delta\theta_{\rm D}}$$
(4)

where $\delta\theta_D$ is the pixel size in declination.

Cylinder Length:

$$L(\Delta \theta_{\rm D}, z, \delta \theta_{\rm D}) = N_{feed}(\Delta \theta_{\rm D}, z, \delta \theta_{\rm D}) d(\Delta \theta_{\rm D}, z)$$
(5)

¹ "Phased Array Antenna," D. McGinnis, November 2007, http://projects-docdb.fnal.gov:8080/cgibin/ShowDocument?docid=471

Cylinder Width²

Since the sky will scan through the antenna beam of a cylinder, the width of a cylinder is determined by the amount of integration time needed to obtain the necessary amplitude resolution:

$$W_{\text{cyl}}(\tau_s, z, \Delta z, \Delta T_s, T_s, g, T_a) = \frac{1}{2\pi} \tau_s \Delta F(z, \Delta z) \lambda \left(F(z) \right) \left(\frac{\Delta T_s}{T_s + \frac{1}{g} T_a} \right)^2$$
 (6)

where τ_s is the total integration time of the survey, ΔT_s is the amplitude resolution, T_s is the average sky temperature, g is the antenna efficiency, and T_a is the amplifier noise temperature.

Number of Cylinders

The number of cylinders is determined by the resolution required in right ascension

$$N_{\text{cyl}}(\tau_s, z, \Delta z, \Delta T_s, T_s, g, T_a) = \frac{\lambda}{\Delta \phi_R W_{\text{cyl}}(\tau_s, z, \Delta z, \Delta T_s, T_s, g, T_a)}$$
(7)

where $\Delta \phi_R$ is the required resolution in right ascension.

Amplifier Gain and Phase Variation.

If the gains of the feeds are not calibrated against each other, a point source will not be localized in the pixel map. The level of pixel noise referenced to the signal level of a point source is given as:

$$\frac{\Delta P_{\rm rms}}{P_{\rm psf}} = \frac{\Delta g_{\rm rms}}{\sqrt{N_{feed}}} \tag{8}$$

where Δg_{rms} is the rms variation in gain in the amplifiers along a cylinder. Similarly for phase noise

$$\frac{\Delta P_{\rm rms}}{P_{\rm psf}} = \frac{\Delta \psi_{\rm rms}}{\sqrt{N_{feed}}} \tag{9}$$

where $\Delta\psi_{rms}$ is the rms variation in phase in the amplifiers along a cylinder.

² "Integration Time for 21cm Parabolic Cylinder Radio Telescope," D. McGinnis, April 2009, http://projects-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=469